
2020-11-08

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Classes, encapsulation
and constructors

2
Classes, encapsulation and constructors

Outline

• In this lesson, we will:

– Discuss constructors for rational numbers

– Describe normalizing a rational number

– Describe member functions to access and modify the numerator and
denominator

– Discuss authoring other functions and member functions on
rational numbers

– Describe how to do operator overloading as member functions

– Discuss assignment, copying and the need of a destructor

– Discuss static member functions

3
Classes, encapsulation and constructors

Review of encapsulation

• At this point, you now:

– Have seen how to author a class with member variables

– Are aware of the need for encapsulation

• This requires member variables to be inaccessible

– Are aware we must deal with:

• The initialization of the objects

– Through constructors

• Allow users to access and manipulate objects through their lifetime

– Through member functions

• Clean up before the object goes out of scope or is deleted

– Through destructors

• You have also seen various classes and seen:

– How to use member functions

– Perhaps noticed that initialization and clean-up seems to be
more-or-less seamless: the compiler deals with this

4
Classes, encapsulation and constructors

Using member functions

• For example

– You know nothing about how the std::cout object is designed

– You know nothing about how a string is stored inside an instance of
the std::string class

– You don’t know what is happening inside an instance of the
std::set class, but it seems to have some powerful functionality

– You don’t know how the exception class stores the string that is
passed to the constructor

• However, you don’t need to know this,
so long as you know what the member functions are,
and how to access and manipulate them

1 2

3 4

2020-11-08

2

5
Classes, encapsulation and constructors

Private member variables

• We will now start by modifying our rational number class

– First we will no longer allow users to access the member variables

class Rational {

public:

private:

int numer_;

int denom_;

};

– Up to now, we had a nebulous public: label at the top of the class

– Anything appearing after this is accessible to any user

– Anything after the private: label may only be accessed by:

– Constructors, member functions, destructors and friends

6
Classes, encapsulation and constructors

Private member variables

• In theory, you can have as many such labels as you wish:

class Rational {

// Anything before any label is private...

public:

// Some public member functions

private:

// Some private member variables

// and member functions

public:

// More public stuff...

private:

// More private stuff...

private:

// Even more private stuff... :-/

};

7
Classes, encapsulation and constructors

Private member variables

• Our approach:

class Rational {

public:

// Anything the user can access

// - This is information useful to everyone

// so it will come first

private:

// Anything that is only accessible in

// constructors, member functions, destructors

// and friends appears here

// - This is information useful only to authors

// of this class

};

8
Classes, encapsulation and constructors

Private member variables

• Private member variables cannot even be initialized by the user

– By default, all member variables are always initialized to their
default values (0, 0.0, '\0', false)

• For example,

int main() {

Rational q{};

return 0;

}

5 6

7 8

2020-11-08

3

9
Classes, encapsulation and constructors

Private member variables

• Private member variables can also be instances of classes,
in which case, their default value is whatever the default is
for that class (if it has one):

– The default for an instance of a std::string class is the empty string

• For example,

class Person {

public:

private:

std::string preferred_name_;

std::string surname_;

int birth_year_;

int birth_month_;

int birth_day_;

};

10
Classes, encapsulation and constructors

Constructors

• Problem:

– The default value is exactly what we don’t want for our
rational number class:

• The default denominator is 0

• If we want anything else than the default values,
we must define a constructor that initializes an object

11
Classes, encapsulation and constructors

Constructors

• The constructor is not like other member functions:

– A constructor has the same name as the class

– It is never explicitly called by a user, its call is scheduled by the compiler

– A constructor has no return value
class Rational {

public:

// Constructors

Rational();

private:

int numer_;

int denom_;

};

Rational::Rational():

numer_{0},

denom_{1} {

// Empty constructor--all member variables

// are simply initialized

}

12
Classes, encapsulation and constructors

Constructors

• Like all other functions, constructors must be declared and defined

– The constructor declaration is in the class definition

Rational();

– The constructor definition appears after the class definition

Rational::Rational():
numer_{0},
denom_{1} {

// Empty constructor
// - all member variables are simply initialized

}

9 10

11 12

2020-11-08

4

13
Classes, encapsulation and constructors

Constructors

• To indicate that this is not the definition of a function named Rational,
but rather the definition of a constructor in the Rational class,
we indicate this by placing Rational:: before the constructor
identifier

– If you don’t, the compiler will think you are trying to define
a function called Rational() and will give you an error as
you didn’t specify a return type

Rational::Rational():
numer_{0},
denom_{1} {

// Empty constructor
// - all member variables are simply initialized

}

14
Classes, encapsulation and constructors

Constructors

• Next, we have a colon and all member variables together with
initial values

– The order MUST be the same as the they are listed in the
class definition

– These are the member variables of the object being created

– Each member variable will be initialized one at a time

– Subsequent member variables can the initial values
of previous member variables

Rational::Rational():
numer_{0},
denom_{1} {

// Empty constructor
// - all member variables are simply initialized

}

15
Classes, encapsulation and constructors

Constructors

• Finally, there is the constructor body

– This is a block of code that is executed after all member
variables are initialized

– There is nothing the constructor need do for rational numbers

Rational::Rational():
numer_{0},
denom_{1} {

// Empty constructor
// - all member variables are initialized
// - the rational number is
// already in normal form

}

16
Classes, encapsulation and constructors

Member functions

• Let us write member functions that can return the numerator and
the denominator

class Rational {

public:

// Constructors

Rational();

// Member functions
int numer() const;

int denom() const;

private:

int numer_;

int denom_;

};

The const after the declaration says

“This member function cannot change
the values of any member variables.”

13 14

15 16

2020-11-08

5

17
Classes, encapsulation and constructors

Member functions

• We can define these member functions:
int Rational::numer() const {

return numer_;

}

int Rational::denom() const {

return denom_;

}

– Member functions are declared in the class definition

– Member functions are defined after the class definition

– Any time you refer to any member variable in a member function,
these refer to the member variables of the object that on which
the member function was called

18
Classes, encapsulation and constructors

Member functions

• We can now use these member functions

int main() {

Rational q{};

std::cout << q.numer() << "/" << q.denom() << std::endl;

return 0;

}

• In this main() function, q is a local variable

– The memory allocated for q is cleaned up once that local
variable goes out of scope

• That is, when it goes out of scope,
the memory on the stack may be reused

Output:
0/1

19
Classes, encapsulation and constructors

Member functions

• We can even implement the printing of rational numbers:

std::ostream &operator<<(std::ostream &out, Rational const &p) {

out << p.numer() << "/" << p.denom();

return out;

}

• Using this, we have
int main() {

Rational q{};

std::cout << q << std::endl;

return 0;

}

Output:
0/1

20
Classes, encapsulation and constructors

Member functions

• Could we improve the output?

std::ostream &operator<<(std::ostream &out, Rational const &p) {

out << p.numer();

if (p.denom() != 1) {

out << "/" << p.denom();

}

return out;

}

• Now, if the denominator is 1,
the rational number is printed as an integer

Output:
0

17 18

19 20

2020-11-08

6

21
Classes, encapsulation and constructors

Constructors

• Alternatively, constructors can have parameters

– These parameters can have default values

– As with functions, default values must be given in the declaration

– The declaration of a constructor is in the class definition

class Rational {

public:

Rational();

Rational(int new_numer, int new_denom = 1);

private:

int numer_;

int denom_;

};

22
Classes, encapsulation and constructors

Constructors

• Now there is more work to do…

– Question: If the user gives a zero denominator,
do we just hide the error and set denom_ to 1?

– Hiding errors is often a mistake

• The domain for the denominator is any non-zero integer

Rational::Rational(int new_numer, int new_denom):
numer_{ new_numer },
denom_{ new_denom } {

if (denom_ == 0) {
throw std::domain_error{

"The denominator must be non-zero"
};

}
}

23
Classes, encapsulation and constructors

Constructors

• Recall that we want rational numbers stored in a normal form:

– The denominator is always positive

– The numerator and denominator share no common divisors

Rational::Rational(int new_numer, int new_denom):
numer_{ new_numer },
denom_{ new_denom } {

if (denom_ == 0) {
throw std::domain_error{

"The denominator must be non-zero"
};

}

// Normalize the rational number...
}

24
Classes, encapsulation and constructors

Constructors

• We could just normalize the number in the constructor…

– However, after any arithmetic operation with rational numbers,
we will have to normalize the result

– If we are doing this umpteen times,
why not write a function to do this?

Rational::Rational(int new_numer, int new_denom):
numer_{ new_numer },
denom_{ new_denom } {

if (denom_ == 0) {
throw std::domain_error{

"The denominator must be non-zero"
};

}

// Normalize the rational number...
}

21 22

23 24

2020-11-08

7

25
Classes, encapsulation and constructors

Private member functions

• Let’s add a member function that normalizes a rational number

– Users should not access this function, so we will declare it private

– These are sometimes called helper functions

• They are meant to be used by other member functions, not users

– It may change the member variables, so it is not const

class Rational {
public:

Rational();
Rational(int new_numer, int new_denom = 1);

int numer() const;
int denom() const;

private:
int numer_;
int denom_;
void normalize();

};

26
Classes, encapsulation and constructors

Private member functions

• Here is an implementation:

void Rational::normalize() {
// By the time this function is ever called,
// the denominator should never be zero
assert(denom_ != 0);

if (denom_ < 0) {
numer_ = -numer_;
denom_ = -denom_;

}

int divisor{ gcd(numer_, denom_) };

numer_ /= divisor;
denom_ /= divisor;

}

For now, assume gcd(…) is

implemented somewhere else

27
Classes, encapsulation and constructors

Constructors

• How do we use this normalize member function in the constructor?

– If a member function is called inside a constructor, member
function or destructor, it is assumed to be called on the same object
that this constructor, member function or destructor was called on

Rational::Rational(int new_numer, int new_denom):
numer_{ new_numer },
denom_{ new_denom } {

if (denom_ == 0) {
throw std::domain_error{

"The denominator must be non-zero"
};

}

normalize();
}

28
Classes, encapsulation and constructors

Constructors

• We can now use this:

int main() {

Rational p{ -10, -45 };

std::cout << p << std::endl;

return 0;

}
Output:

2/9

25 26

27 28

2020-11-08

8

29
Classes, encapsulation and constructors

Constructors

• You can have as many constructors as you wish,
but the compiler must be able to determine exactly which
constructor you are calling

class Rational {

public:

Rational();

Rational(int new_numer = 0, int new_denom = 1);

// Other public member functions

private:

// Private member variables and

// private member functions

};

30
Classes, encapsulation and constructors

Member functions

• Next, let us write member functions that allow the user to change
the numerator or denominator

class Rational {

public:

// Constructors

Rational();

Rational(int new_numer, int new_denom = 1);

// Member functions
int numer() const;

int denom() const;

void numer(int new_numer);

void denom(int new_denom);

private:

int numer_;

int denom_;

void normalize();

};

31
Classes, encapsulation and constructors

Member functions

• We can implement these functions:
void Rational::numer(int new_numer) {

numer_ = new_numer;

normalize();

}

void Rational::denom(int new_denom) {

if (new_denom == 0) {

throw domain_error{ "The denominator cannot be set to 0" };

}

denom_ = new_denom;

normalize();

}

32
Classes, encapsulation and constructors

Member functions

• Suppose we want to implement an absolute value function

– Is it a member function, or just a function

int main() {

Rational q{ -5, 17 };

std::cout << abs(q) << std::endl;

std::cout << q.abs() << std::endl;

return 0;

}

29 30

31 32

2020-11-08

9

33
Classes, encapsulation and constructors

Member functions

• Each is implemented differently:

// Called using abs(q)

// - This requires a function declaration

Rational abs(Rational const &q) {

return Rational{ std::abs(q.numer()), q.denom() };

}

// Called using q.abs()

// - This requires a member function declaration

// in the class definition

Rational Rational::abs() const {

return Rational{ std::abs(numer()), denom() };

}

The preference in C++ is to use the second.
– Don’t buck the trend…it’s a waste of time

34
Classes, encapsulation and constructors

Operator overloading

• How about operator overloading?
// This requires a function declaration

Rational operator+(Rational const &p, Rational const &q) {

return Rational{ p.numer()*q.denom() + q.numer()*p.denom(),

p.denom()*q.denom() };

}

// This requires a member function declaration
// in the class definition

// - The left operand is the object on which this member
// function is called, and the right is the argument

Rational Rational::operator+(Rational const &q) const {

return Rational{ numer()*q.denom() + q.numer()*denom(),

denom()*q.denom() };

}

The preference in C++ is to use the second.
– Don’t buck the trend…it’s a waste of time

35
Classes, encapsulation and constructors

Operator overloading

• Which of these should be used?

Rational Rational::operator+(Rational const &q) const {

return Rational{ numer()*q.denom() + q.numer()*denom(),

denom()*q.denom() };

}

Rational Rational::operator+(Rational const &q) const {

return Rational{ numer_*q.denom_ + q.numer_*denom_,

denom_*q.denom_ };

}

– The compiler will likely implement first as if it was authored
in the second…

36
Classes, encapsulation and constructors

Private member functions

• Here is a better implementation of normalize():

void Rational::normalize() {
// By the time this function is ever called,
// the denominator should never be zero
assert(denom() != 0);

if (denom() < 0) {
numer_ = -numer();
denom_ = -denom();

}

int divisor{ gcd(numer(), denom()) };

numer_ /= divisor;
denom_ /= divisor;

}

if (denom_ = 0) {
// Do something...

}

33 34

35 36

2020-11-08

10

37
Classes, encapsulation and constructors

Operator overloading

• How about operator overloading?
// The denominator of an integer is '1'

Rational Rational::operator+(int const n) const {

return Rational{ numer() + n*denom(),

denom() };

}

// Here, the first argument is an int, so we cannot define

// this as a member function, but when we return q + n,

// this calls the above function

Rational operator+(int const n, Rational const &q) {

return q + n;

}

38
Classes, encapsulation and constructors

Our class definitionclass Rational;

Rational operator+(int const n, Rational const &q);

class Rational {

public:

// Constructors

Rational();

Rational(int new_numer, int new_denom = 1);

// Member functions
int numer() const;

int denom() const;

Rational abs() const;

Rational operator+(Rational const &q) const;

Rational operator+(int const n) const;

void numer(int new_numer);

void denom(int new_denom);

private:

int numer_;

int denom_;

void normalize();

};

39
Classes, encapsulation and constructors

Operator overloading

• How about unary + and unary -?
// '+q' evaluates to the rational number 'q’

// - as in p + +q;

Rational Rational::operator+() const {

return Rational{ numer(), denom() };

}

// '-q' evaluates to the additive inverse of 'q'

// - as in p + -q;

Rational Rational::operator-() const {

return Rational{ -numer(), denom() };

}

40
Classes, encapsulation and constructors

Operator overloading

• Now we can implement subtraction:
Rational Rational::operator-(Rational const &q) const {

return operator+(-q);

}

Rational Rational::operator-(int const n) const {

return operator+(-n);

}

Rational operator-(int const n, Rational const &q) const {

return (-q) + n;

}

37 38

39 40

2020-11-08

11

41
Classes, encapsulation and constructors

Comparisons

• Also, comparisons become much easier:
// This will be called if you every compare p == q for
// two instances of the Rational class

bool Rational::operator==(Rational const &q) const {

return (numer() == q.numer()) && (denom() == q.denom());

}

// This will be called if you every compare p == n where

// p is an instance of the Rational class and n is an int

bool Rational::operator==(int const n) const {

return (denom() == 1) && (numer() == n);

}

// This will be called if you every compare n == q where

// q is an instance of the Rational class and n is an int

Rational operator==(int const n, Rational const &q) {

return q == n;

}

42
Classes, encapsulation and constructors

Comparisons

• Also, comparisons become much easier:
// This will be called if you every compare p < q for
// two instances of the Rational class

bool Rational::operator<(Rational const &q) const {

return numer()*q.denom() < q.numer()*denom();

}

// This will be called if you every compare p < n where

// p is an instance of the Rational class and n is an int

bool Rational::operator<(int const n) const {

return numer() < n*denom();

}

// This will be called if you every compare n < q where

// q is an instance of the Rational class and n is an int

Rational operator<(int const n, Rational const &q) const {

return Rational{ n, 1 } < q;

}

43
Classes, encapsulation and constructors

Assignment

• What happens with assignment?

int main() {

Rational p{25, -15};

Rational q{3, 5};

Rational r{2, 4};

std::cout << (p + q) << std::endl;

std::cout << (p + r) << std::endl;

q = r;

std::cout << (p + q) << std::endl;

return 0;

}

– By default, all member variables are just copied over

• This is true even if they are private, because the user still
does not have access to them

Output:
-16/15
-7/6
-7/6

44
Classes, encapsulation and constructors

Initializing a new rational with another

• What happens with initializations?

int main() {

Rational p{25, -15};

Rational q{3, 5};

Rational r{q};

std::cout << (p + q) << std::endl;

std::cout << (p + r) << std::endl;

q = p;

std::cout << (p + q) << std::endl;

std::cout << (p + r) << std::endl;

return 0;

}

– By default, all member variables are just copied over

• This is true even if they are private, because the user still
does not have access to them

Output:
-16/15
-16/15
-10/3
-16/15

41 42

43 44

2020-11-08

12

45
Classes, encapsulation and constructors

Destructor?

• Does a rational number class need a destructor?

– No additional memory is required,
there is nothing to clean up, so no

46
Classes, encapsulation and constructors

A gcd function?

• Recall that previously, we needed a gcd function in normalize
member function

– If we were running C++17, we’d have such a function…

– Such a function is a helper function,
but it is a helper function independent of any instance

• That is, it is a function taking two int, and returning an int

47
Classes, encapsulation and constructors

A gcd function?

// This implementation assumes that 'n' is the

// denominator and thus greater than zero

int Rational::gcd(int m, int n) {

assert(n > 0);

if (m == 0) {

return n;

} else {

if (m < 0) {

m = -m;

}

while (n != 0) {

int rem{ m % n };

m = n;

n = rem;

}

return m;

}

}

48
Classes, encapsulation and constructors

A gcd function?

• Because it is independent of any instance of a class,
we can declare it to be a function associated with the class

– This is done by declaring the function static in the class definition

class Rational {

public:

// All the public stuff...

private:

int numer_;

int denom_;

void normalize();

static int gcd(int m, int n);

};

– Static member functions may not access
any non-static member variables or
call any non-static member functions

45 46

47 48

2020-11-08

13

49
Classes, encapsulation and constructors

Summary

• Following this lesson, you now

– Understand how to make member variables private

– Know how to define constructors

– Understand how to author member functions

– Understand how to do operator overloading with member functions

– Understand the workings of assignment and initialization

– Are aware that a destructor isn’t always necessary

– Are aware of static member functions

50
Classes, encapsulation and constructors

References

[1] https://en.wikipedia.org/wiki/C++_classes

[2] https://en.wikipedia.org/wiki/Exception_handling

[3] https://www.cplusplus.com/reference/stdexcept/

51
Classes, encapsulation and constructors

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

52
Classes, encapsulation and constructors

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

49 50

51 52

